Renowned Speakers
Mark Bronstrup
Helmholtz Centre for Infection Research Germany Germany
Emmanuel Mic. Drakakis
Imperial College London UK UK
Lidia Gardner
The University of Tennessee Health Science Center USA USA
Helena Barreto Henriksson
Sahlgrenska University Hospital Sweden Sweden
Krishna Dronam Raju
Foundation for Genetic Research USA USA
Maria-Joao R. P. Queiroz
University of Minho Portugal Portugal
Patricia E Berg
George Washington University USA USA
Omid Akbarzadeh
Texas A&M University USA USA
Recommended Global Biotechnology Webinars & Conferences
Asia Pacific & Middle East
ANALYTICA ACTA 2025
- About Conference
- Scientific Sessions &Tracks
- Abstract Submission Criteria & Eligibility
- Participation/Presentation Option
- Young Research Award
- Market Analysis
About Conference
Analytical Acta 2025 | July 17-18, 2025 | Paris, France
Conference Series LLC Ltd welcomes you to attend the 26th Conference on Global Summit on Analytical and Bioanalytical Techniques to be held in Paris, France on July 17-18, 2025.
Details of Analytical Acta 2025 Conferences in France:
Conference Name |
Place |
Date |
Paris, France |
July 17-18, 2025 |
The 26th Global Summit on Analytical and Bioanalytical Techniques will be held in Paris on July 17-18, 2025 in Paris, France. Keynote speeches, oral presentations, poster presentations, and exhibitions will also be held in a timely manner. The subject matter of the convention is "shaping the destiny with new studies in analytical chemistry". It provides a platform for the critical analysis of new data, expands the reach of analytical chemists, and exchanges the latest research findings and results on all aspects of bioanalytical and analytical techniques.
The Analytical Conference offers research papers on analytical chemistry expertise from a variety of scientific backgrounds and is open to young researchers and students. The main purpose of the Analytical Techniques Conference is to spread knowledge about analytical and bioanalytical techniques, chromatography, separation techniques, mass spectroscopy, spectroscopy, and spectrometry. With research in both pharmaceutical and life sciences, Analytical 2025 is the perfect place to exchange and develop knowledge on critical analytical techniques and tools. Analytics 2025. deals with the study of all aspects of the substances that make up matter, their properties and reactions, and the use of such reactions to form new substances.
This conference offers analytical chemistry research activities with expertise from a variety of scientific backgrounds and is open to young researchers and students alike. The conference is primarily aimed at disseminating knowledge of life science and industrial analytical techniques. As both the life and industrial sciences require analytical and bioanalytical techniques in their research work, analytical conferences are a great place to exchange and develop knowledge about important analytical tools.
It is my sincere hope that the Analytical Acta 2025 will act as an international platform to meet researchers from all over the world, expand professional contacts and generate new opportunities, including the establishment of new collaborations.
We look forward to seeing you at Analytical Acta 2025
Scientific Sessions &Tracks
Advancements in Analytical Techniques
Advancements in analytical techniques have revolutionized various fields by enhancing accuracy, speed, and sensitivity. Innovations like mass spectrometry, high-performance liquid chromatography (HPLC), and nuclear magnetic resonance (NMR) spectroscopy have enabled precise molecular analysis. Additionally, advancements in data analytics and machine learning algorithms have significantly improved data interpretation, facilitating more informed decision-making in research and industry. These cutting-edge techniques are crucial for progress in pharmaceuticals, environmental science, and material engineering.
Bioanalytical Method Development and Validation
Bioanalytical method development and validation involve designing, optimizing, and confirming analytical techniques to accurately quantify drugs, metabolites, and biomarkers in biological samples. This process ensures reliability and reproducibility for pharmacokinetic, toxicokinetic, and clinical studies. Key aspects include sensitivity, specificity, accuracy, precision, and stability. Robust validation follows regulatory guidelines, enabling confident decision-making in drug development, therapeutic monitoring, and biomedical research.
Pharmaceutical analysis is the process of drug substance and product testing to ensure quality, safety, and efficacy. It involves methods like chromatography, spectroscopy, and titration to identify and quantify components, assess purity, and determine stability. Regulatory compliance, validation of analytical methods, and adherence to Good Laboratory Practices (GLP) are crucial. This field is essential for developing new drugs and maintaining the integrity of pharmaceuticals throughout their lifecycle.
Environmental analysis involves examining the external factors affecting an organization, including political, economic, social, technological, environmental, and legal aspects (PESTEL). This process helps identify opportunities and threats in the operating environment. Key elements include market trends, regulatory changes, competitive landscape, and technological advancements. Effective analysis enables strategic planning, risk management, and sustainability initiatives, ensuring the organization adapts to evolving conditions and maintains a competitive edge.
Clinical and Forensic Analysis
Clinical and forensic analysis involves examining biological samples to diagnose medical conditions and investigate crimes. Clinically, it aids in detecting diseases, monitoring therapy, and managing patient health. Forensically, it identifies substances, verifies identities, and uncovers crime scene evidence. Techniques like toxicology, DNA profiling, and histopathology are vital. The integration of advanced technologies ensures accurate, reliable results, bridging healthcare and legal systems to enhance public safety and justice.
Food and Beverage Analysis involves examining the composition, quality, and safety of food and drink products. This process uses techniques like chromatography, spectroscopy, and microbiological testing to assess nutritional content, detect contaminants, and ensure compliance with regulations. Key aspects include flavor profiling, shelf-life determination, and ingredient verification. The goal is to maintain product integrity, enhance quality control, and meet consumer expectations, ultimately ensuring the delivery of safe and high-quality products to the market.
Metabolomics and proteomics are powerful techniques in systems biology. Metabolomics studies metabolites, small molecules in cells, tissues, or organisms, providing insights into metabolic pathways and disease states. Proteomics analyzes the proteome, the entire set of proteins produced, revealing protein functions and interactions. Together, they offer a comprehensive view of biological processes, aiding in biomarker discovery, disease diagnosis, and the development of personalized medicine approaches.
Nanomaterials and Nanotechnology in Analysis
Nanomaterials and nanotechnology revolutionize analytical techniques, enabling unprecedented sensitivity and specificity. Nanoscale materials, such as quantum dots and nanoparticles, enhance imaging and diagnostic methods, allowing for early disease detection and precise molecular characterization. These innovations facilitate the development of advanced sensors and lab-on-a-chip devices, providing rapid, accurate analyses in environmental monitoring, medical diagnostics, and chemical detection, thereby transforming traditional approaches and driving forward scientific progress.
Biopharmaceuticals and Biologics
Biopharmaceuticals and biologics represent a cutting-edge segment of medical science, utilizing living organisms to develop therapies. These products, including monoclonal antibodies, vaccines, and gene therapies, target complex diseases like cancer, autoimmune disorders, and genetic conditions with high precision. They promise improved efficacy and reduced side effects compared to traditional drugs. Innovation in biotechnology is driving rapid advancements, making biopharmaceuticals and biologics pivotal in modern medicine's evolution.
Instrumentation and Automation in Analytical Chemistry
Instrumentation and automation in analytical chemistry revolutionize the field by enhancing precision, accuracy, and efficiency. Modern instruments, such as mass spectrometers, chromatographs, and spectrophotometers, enable detailed analysis of complex samples. Automation streamlines repetitive tasks, reduces human error, and accelerates data processing. Robotic systems and software integration facilitate high-throughput screening, real-time monitoring, and data analysis, ultimately driving innovation in chemical research, quality control, and pharmaceutical development.
Analytical Chemistry in Agriculture
Analytical chemistry in agriculture involves using advanced techniques to analyze soil, water, and crops, ensuring optimal growth and sustainability. Methods like spectroscopy, chromatography, and mass spectrometry are employed to detect nutrients, pollutants, and contaminants. This precise analysis helps in monitoring soil health, managing fertilizers and pesticides, and improving crop yield and quality. By integrating these techniques, agricultural practices become more efficient, environmentally friendly, and economically viable.
Emerging Trends in Analytical and Bioanalytical Techniques
Emerging trends in analytical and bioanalytical techniques are revolutionizing research with advancements like high-resolution mass spectrometry, which enhances sensitivity and specificity in detecting complex biomolecules. The integration of artificial intelligence and machine learning accelerates data analysis, offering deeper insights. Innovations in lab-on-a-chip technologies and non-invasive biosensors are improving real-time monitoring and diagnostics, driving progress in personalized medicine and environmental monitoring.
Workshops and Hands-On Training
Engage in immersive, practical sessions designed to enhance your skills and knowledge. Our workshops offer hands-on experience with cutting-edge techniques and technologies, led by industry experts. Participants will gain invaluable insights through interactive exercises, real-world scenarios, and peer collaboration. This dynamic format ensures you leave with actionable skills and a deeper understanding of trauma, critical care, and emergency medicine. Elevate your expertise and network with professionals in the field.
Chemical analysis and sensing involve techniques for detecting and quantifying chemical substances. These methods, including spectroscopy, chromatography, and electrochemical sensors, provide critical data for fields ranging from environmental monitoring to medical diagnostics. They enable precise measurement of compound concentrations, identification of unknown substances, and real-time analysis of chemical reactions. Advanced sensors integrate with digital technologies, enhancing accuracy and enabling new applications in research and industry.
Spectroscopic techniques analyze the interaction between light and matter to reveal information about chemical compositions and structures. Key methods include infrared spectroscopy, which identifies molecular vibrations; nuclear magnetic resonance (NMR) spectroscopy, which provides detailed information about atomic environments; and mass spectrometry, which determines molecular weight and structure. These techniques are pivotal in fields like chemistry, biology, and materials science for both qualitative and quantitative analysis.
Genomics and Molecular Biology Analysis
Genomics and molecular biology analysis explore the genetic material of organisms to understand their function and variation. By sequencing DNA, researchers can identify genetic mutations, track inheritance patterns, and uncover the molecular basis of diseases. Techniques like CRISPR, RNA sequencing, and genome-wide association studies (GWAS) allow for detailed investigation of gene expression, regulation, and interactions, paving the way for personalized medicine and advanced therapeutic strategies.
Surface and Interface Analysis
Surface and interface analysis involves studying the outermost layers of materials to understand their properties and behaviors. Techniques like scanning tunneling microscopy (STM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) offer insights into surface topography, composition, and electronic states. These analyses are crucial for applications in materials science, nanotechnology, and semiconductor manufacturing, helping to optimize performance and ensure quality in various technological fields.
Analytical Techniques in Material Science
Analytical techniques in material science are crucial for understanding material properties and behaviors. Key methods include spectroscopy, which identifies chemical compositions; microscopy, for detailed imaging at the atomic level; and X-ray diffraction, which reveals crystal structures. Additionally, thermal analysis assesses material stability under temperature changes, while mechanical testing evaluates strength and durability. Together, these techniques provide comprehensive insights into material composition, structure, and performance, driving advancements in technology and industry.
Imaging Techniques and Microscopy
Imaging techniques and microscopy are pivotal in modern science, enabling detailed visualization of structures at micro and nanoscale levels. Techniques like confocal microscopy, electron microscopy, and MRI offer insights into cellular processes, tissue architecture, and molecular interactions. Advances in imaging technologies, including super-resolution microscopy and live-cell imaging, provide unparalleled resolution and dynamic views, facilitating breakthroughs in biology, medicine, and materials science.
Quality by Design (QbD) in Analytical Method Development
Quality by Design (QbD) in Analytical Method Development emphasizes a systematic approach to creating robust, reliable methods. It involves defining clear objectives, understanding process variables, and employing risk management strategies to ensure quality outcomes. By integrating QbD principles, developers can anticipate potential issues, optimize method performance, and enhance overall efficiency. This proactive approach promotes consistency, reduces variability, and ensures that analytical methods meet predefined quality standards throughout their lifecycle.
Data Integrity and Compliance in Analytical Chemistry
Data integrity and compliance in analytical chemistry ensure that experimental data is accurate, reliable, and consistent throughout its lifecycle. Rigorous protocols, such as Good Laboratory Practice (GLP) and Good Manufacturing Practice (GMP), are critical. They enforce standardized procedures for data recording, validation, and storage, minimizing errors and maintaining transparency. Adherence to regulatory guidelines, such as FDA or EMA requirements, is essential for reliable, reproducible results and compliance with industry standards.
High-resolution techniques in imaging and spectroscopy are pivotal for achieving unparalleled detail in scientific research. Methods like super-resolution microscopy and high-resolution mass spectrometry push the boundaries of resolution, enabling the observation of fine structures and molecular interactions at an atomic scale. These techniques enhance our understanding of complex biological systems, material properties, and chemical processes, providing crucial insights for advancements in fields such as medicine, nanotechnology, and materials science.
Bioinformatics and Computational Approaches
Bioinformatics and computational approaches are crucial in modern biology, combining data science with molecular biology to analyze complex biological data. They employ algorithms, statistical models, and machine learning to interpret genomic sequences, protein structures, and gene expression profiles. These techniques enable the discovery of biological patterns, predict protein functions, and facilitate personalized medicine, advancing our understanding of diseases and developing targeted therapies. Their integration accelerates research and innovation in life sciences.
Analytical Techniques for Biotechnology
Analytical techniques for biotechnology encompass a range of methods used to analyze and characterize biological systems. These techniques include chromatography for separating biomolecules, mass spectrometry for identifying molecular weights, and electrophoresis for separating proteins and nucleic acids. Advanced methods like next-generation sequencing enable high-throughput genomic analysis, while immunoassays provide specific detection of proteins and other molecules. These tools are crucial for research, development, and quality control in biotechnology.
Emerging Contaminants and Analytical Challenges
Emerging contaminants, including pharmaceuticals, personal care products, and industrial chemicals, pose significant environmental and health risks. Detecting these substances requires advanced analytical techniques due to their low concentrations and complex matrices. Challenges include the need for high sensitivity and specificity, the development of robust sampling methods, and the integration of cutting-edge technologies like mass spectrometry and chromatography to ensure accurate monitoring and risk assessment.
Analytical Chemistry in the Energy Sector
Analytical chemistry plays a crucial role in the energy sector by ensuring the quality and efficiency of energy sources. It involves the precise measurement and analysis of substances in fuels, lubricants, and waste products. Techniques such as spectroscopy, chromatography, and mass spectrometry are employed to detect impurities, optimize energy production processes, and monitor environmental impact. This ensures compliance with regulations and enhances the performance and sustainability of energy systems.
Automation in Bioanalytical Laboratories
Automation in bioanalytical laboratories enhances efficiency and accuracy by streamlining repetitive tasks such as sample preparation, analysis, and data management. Advanced robotics and software systems reduce human error, increase throughput, and ensure consistency across experiments. Automated systems, including liquid handlers and high-throughput screening platforms, facilitate rapid processing of complex assays, enabling high-resolution analysis and real-time monitoring. This innovation drives advancements in research, diagnostics, and personalized medicine.
Analytical Challenges in Personalized Medicine
Personalized medicine tailors treatments based on individual genetic profiles, but it faces analytical hurdles. Key challenges include managing vast genomic data, integrating multi-omics information, and ensuring data accuracy. Algorithms must adapt to genetic variability and predict patient responses with precision. Additionally, interpreting complex interactions among genes, environmental factors, and lifestyle requires advanced bioinformatics tools and robust statistical methods to ensure effective, individualized healthcare solutions.
Regenerative Medicine and Analytical Techniques
Regenerative Medicine focuses on repairing or replacing damaged tissues and organs through techniques like stem cell therapy, tissue engineering, and gene editing. Analytical techniques play a crucial role in this field by enabling precise assessment of cell behaviors, biomolecular interactions, and tissue integration. Advanced methods such as high-throughput sequencing, imaging technologies, and bioinformatics are used to analyze and optimize regenerative therapies, ensuring efficacy and safety in clinical applications.
Abstract Submission Criteria & Eligibility
PRESENTATION REQUIREMENTS:
Authors presenting at the conference are required to cover their own registration, travel, and accommodation expenses. Please note that accepted abstracts will receive an acceptance email with instructions on how to register for the conference.
Abstracts will be compiled into conference books, which will be distributed to participants during the event.
In the event that a presenter is unable to attend, they must arrange for a qualified substitute to present their paper or poster. If such a change is needed, please notify our conference team promptly.
SUBMISSION OPTIONS:
Oral paper presentations will be allocated 30-minute time slots and will be organized into sessions based on thematic clustering. The keynote session will extend for 45 minutes, while workshops/special sessions will have duration of 60 minutes. Symposia will also be allotted 60 minutes, followed by a 5-minute Q&A session.
Graduate and Master’s students may submit their abstracts for consideration in the poster and e-poster presentation category.
PhD students are invited to submit abstracts for the special Young Researcher’s Forum (YRF), poster, and e-poster presentation category. It's important to note that the YRF category encompasses brief oral presentations specifically tailored for Ph.D. students.
Extended abstract: Here's a revised version of the instructions in the Abstract Template format:
Title: Submissions Utilizing the Abstract Template
Abstract: This abstract outlines the requirements for submissions utilizing the Abstract Template in the specified category. Papers submitted in this category may encompass original empirical research, theoretical development, reviews, or critiques. The format ensures consistency and clarity in presentation, facilitating comprehension and evaluation for reviewers and readers alike.
Keywords: Abstract Template, submissions, empirical research, theoretical development, reviews, critiques.
These abstracts follow the structure of the Abstract Template, providing a concise overview of the respective topics while adhering to the prescribed format.
Participation/Presentation Option
Oral presentation: Oral presentations are open to topics spanning research, theory, professional practices, or personal experiences, presented in a succinct manner. Individuals with personal insights are encouraged to share narratives aiding everyday life. Speakers allotted a 30-minute slot should aim for a speaking duration of 20-25 minutes, while Keynote speakers should target 40-45 minutes, reserving the remainder for questions and discussion facilitated by the Session Chair.
Workshop: Workshop presenters will cover the same topic as the oral presentation but delve deeper into specialized techniques with detailed demonstrations. The workshop will last approximately 45-50 minutes, allowing for in-depth exploration. Participants keen on joining can do so alongside their teams, collaborating with their research coordinators. Special group waivers will be available upon registration for these workshops.
Poster presentation: The Analytica Acta 2025 conference will be hosting a Student Poster Competition, aiming to foster the presentation of original research by students and recent graduates. Each presenter will have approximately 5-7 minutes to present their poster, which includes time for questions and answers. During the evaluation process, judges may pose questions to the presenters. This competition serves as an invaluable opportunity for emerging scientists to engage with the latest research in their field and enhance their skills as multidisciplinary researchers. Poster displays will be in hard copy format, measuring 1x1 meter.
For further information on Poster Presentation and Judging Criteria, please refer to the Poster Presentation Guidelines.
Webinar: The webinar presentation caters to interested attendees unable to participate in person due to scheduling conflicts or other commitments. In this alternative, the presenter can pre-record their session, which will then be featured during the webinar presentation session.
E-Poster: The e-Poster shares similarities with webinar presentations. During this session, participants will showcase their presentations in a poster format on the conference website. Additionally, the presenter's abstract will be featured in the conference souvenir and journal, complete with a DOI (Digital Object Identifier).
Exhibition: You're invited to participate in Analytica Acta 2025, an event showcasing products and services from various organizations including drug manufacturers, clinical trial sites, management consultants, chemists, pharmacists, business delegates, and equipment manufacturers—both commercial and non-commercial.
Discover booth details and benefits by visiting "Why Exhibit with Us?" For further inquiries, reach out to contact@europeanmeets.com.
Advertisement: We are delighted to extend a warm welcome to all esteemed participants to the upcoming “26th Global Summit on Analytical and Bioanalytical Techniques," slated for July 17-18, 2025 in Paris, France. Our conference program serves as an indispensable guide throughout the event, providing invaluable information for attendees as they navigate the sessions and networking opportunities.
Advertising within the conference program presents a prime opportunity to showcase your brand and services to a targeted audience, ensuring maximum visibility and long-term business prospects. Explore our diverse range of advertisement options and competitive prices by reaching out to us at contact@primecongress.com.
Moreover, consider elevating your presence and demonstrating your commitment to the field through our Premium Sponsorship package or explore additional sponsorship opportunities tailored to your preferences. For more details on our sponsorship packages, kindly contact our program manager at contact@europeanmeets.com or reach out via WhatsApp at +44-2045861247.
Join us as we convene leading experts, researchers, and professionals to exchange insights, foster collaborations, and advance the fight against Analytica Acta. We look forward to your participation in shaping this transformative event.
Young Research Award
Prestigious Award for Young Research’s at Analytica Acta 2025 – “Analytical and Bioanalytical Techniques”
Analytica Acta 2025 Committee is glad to announce “26th Global Summit on Analytical and Bioanalytical Techniques” on July 17-18, 2025 in Paris, France focusing on the theme: “Analytical Frontiers: Shaping the Future of Bioanalytical Sciences” Analytica Acta 2025 developments are maintaining their momentum. Health Nutritional Conference program delves into strategic discussions.
Analytica Acta 2025 Young Scientist Awards:
Analytica Acta 2025 Committee is intended to honour prestigious award for talented Young researchers, scientists, Young Investigators, Post-Graduate students, Post-doctoral fellows, Trainees, Junior faculty in recognition of their outstanding contribution towards the conference theme. The Young Scientist Awards make every effort in providing a strong professional development opportunity for early career academicians by meeting experts to exchange and share their experiences on all aspects of Analytica Acta.
Young Research’s Awards at Analytica Acta 2025 for the Nomination: Young Researcher Forum - Outstanding Masters/Ph.D./Post Doctorate thesis work Presentation, only 25 presentations acceptable at Analytica Acta 2025 young research forum.
Benefits:
- Young Scientist Award recombination certificate and memento to the winners.
- Our conferences provide best Platform for your research through oral presentations.
- Learn about career improvement with all the latest technologies by networking.
- Young Scientists will get appropriate and timely information by this Forum.
- Platform for collaboration among young researchers for better development.
- Provide an opportunity for research interaction and established senior investigators across the globe in the field.
- Share the ideas with both eminent researchers and mentors.
- It’s a great privilege for young researchers to learn about the research areas for expanding their research knowledge.
Eligibility:
- Young Investigators, Post-Graduate students, Post-doctoral fellows, Trainees, junior faculty with a minimum of 5 years of research experience
- Presentation must be into scientific sessions of the conference.
- Each Young Researcher / Young Scientist can submit only one paper (as first author or co-author).
- Age limit-Under 35yrs
- All submissions must be in English.
Market Analysis
Market Size Over Time
The market for analytical techniques has shown steady growth over the years. In 2018, the market size was valued at $30 billion, which increased to $32 billion in 2019. The upward trend continued, reaching $35 billion in 2020, $38 billion in 2021, $42 billion in 2022, and finally $46 billion in 2023. This consistent growth indicates a robust demand for analytical techniques across various industries.
Similarly, the bioanalytical techniques market has experienced significant growth. Starting at $20 billion in 2018, it grew to $22 billion in 2019, $24 billion in 2020, $27 billion in 2021, $30 billion in 2022, and $34 billion in 2023. Although starting from a smaller base compared to analytical techniques, the bioanalytical market has shown comparable growth rates, reflecting its increasing importance in fields such as pharmaceuticals and biotechnology.
Growth Rate Over Time
The growth rates for analytical techniques have fluctuated but remained strong, starting at 5% in 2018 and reaching a peak of 10.53% in 2022 before slightly declining to 9.52% in 2023. This variability indicates responsiveness to market demands and advancements in technology, driving the overall growth.
Bioanalytical techniques, on the other hand, have consistently shown higher growth rates. From an initial 10% growth rate in 2018, the market has seen steady increases, peaking at 13.33% in 2023. This sustained high growth rate underscores the expanding applications and innovations in bioanalytical techniques, particularly in healthcare and medical research.
To Collaborate Scientific Professionals around the World
Conference Date July 17-18, 2025
For Sponsors & Exhibitors
Speaker Opportunity
Useful Links
Past Conference Report
Supported By
All accepted abstracts will be published in respective Conference Series International Journals.
Abstracts will be provided with Digital Object Identifier by