Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Nuria De Diego

Nuria De Diego

Palacký University & Institute of Experimental Botany ASCR, Czech Republic

Title: Implementation of plant hormone quantification in Arabidopsis using UHPLC-MS/MS

Biography

Biography: Nuria De Diego

Abstract

Modern plant physiology has clarified many important processes involved in plant development and crop yield. Among them, the knowledge of the mechanisms implicated in plant response against ambient fluctuations allows us to identify interesting genotypes. These processes have been reported to be regulated by molecules known as plant hormones. Cytokinins, gibberellins, auxins and abscisic acid are some examples of them. They regulate physiological processes such as apical dominance, plant transpiration by stomata closure or rooting. Although plant hormones are related to these processes, nowadays more information is needed about their signalling and action mode in plants. In this regards, our research group is constantly working in the improvement of protocols to analyse the variations of these molecules in different plants tissues grown under varied conditions. The wide experience in the study of these plant growth regulators and the use of leading technologies based on ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) have permitted us to increase the number of metabolites detected as well as simplification of purification protocol. In addition, the inclusion of micro-extraction and immuno-affinity techniques reduces the needed amount of sample per analysis. In addition, our group has an avant-garde high throughput phenotyping to continuously monitor the relative growth rate and to collect wide range of fluorescence parameters. The use of this facility permits us to combine and corroborate the relationship between the plant physiological traits and the variations in hormone pathways and to identify those metabolites related to these processes. As example, new information about the involvement between photosynthesis, carbon metabolism and changes of cytokinin levels in Arabidopsis was found.